Computer Science > Computer Vision and Pattern Recognition
[Submitted on 16 Apr 2016]
Title:Evolutionary Projection Selection for Radon Barcodes
View PDFAbstract:Recently, Radon transformation has been used to generate barcodes for tagging medical images. The under-sampled image is projected in certain directions, and each projection is binarized using a local threshold. The concatenation of the thresholded projections creates a barcode that can be used for tagging or annotating medical images. A small number of equidistant projections, e.g., 4 or 8, is generally used to generate short barcodes. However, due to the diverse nature of digital images, and since we are only working with a small number of projections (to keep the barcode short), taking equidistant projections may not be the best course of action. In this paper, we proposed to find $n$ optimal projections, whereas $n\!<\!180$, in order to increase the expressiveness of Radon barcodes. We show examples for the exhaustive search for the simple case when we attempt to find 4 best projections out of 16 equidistant projections and compare it with the evolutionary approach in order to establish the benefit of the latter when operating on a small population size as in the case of micro-DE. We randomly selected 10 different classes from IRMA dataset (14,400 x-ray images in 58 classes) and further randomly selected 5 images per class for our tests.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.