Computer Science > Multimedia
[Submitted on 18 Apr 2016 (v1), last revised 22 Sep 2016 (this version, v5)]
Title:Prediction-error of Prediction Error (PPE)-based Reversible Data Hiding
View PDFAbstract:This paper presents a novel reversible data hiding (RDH) algorithm for gray-scaled images, in which the prediction-error of prediction error (PPE) of a pixel is used to carry the secret data. In the proposed method, the pixels to be embedded are firstly predicted with their neighboring pixels to obtain the corresponding prediction errors (PEs). Then, by exploiting the PEs of the neighboring pixels, the prediction of the PEs of the pixels can be determined. And, a sorting technique based on the local complexity of a pixel is used to collect the PPEs to generate an ordered PPE sequence so that, smaller PPEs will be processed first for data embedding. By reversibly shifting the PPE histogram (PPEH) with optimized parameters, the pixels corresponding to the altered PPEH bins can be finally modified to carry the secret data. Experimental results have implied that the proposed method can benefit from the prediction procedure of the PEs, sorting technique as well as parameters selection, and therefore outperform some state-of-the-art works in terms of payload-distortion performance when applied to different images.
Submission history
From: Hanzhou Wu [view email][v1] Mon, 18 Apr 2016 04:52:27 UTC (1,147 KB)
[v2] Mon, 2 May 2016 17:45:57 UTC (1,147 KB)
[v3] Tue, 10 May 2016 22:28:48 UTC (1,147 KB)
[v4] Thu, 12 May 2016 00:24:09 UTC (1,147 KB)
[v5] Thu, 22 Sep 2016 22:01:31 UTC (1,147 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.