Statistics > Machine Learning
[Submitted on 14 Jun 2016 (v1), last revised 8 Dec 2016 (this version, v2)]
Title:Recurrent neural network training with preconditioned stochastic gradient descent
View PDFAbstract:This paper studies the performance of a recently proposed preconditioned stochastic gradient descent (PSGD) algorithm on recurrent neural network (RNN) training. PSGD adaptively estimates a preconditioner to accelerate gradient descent, and is designed to be simple, general and easy to use, as stochastic gradient descent (SGD). RNNs, especially the ones requiring extremely long term memories, are difficult to train. We have tested PSGD on a set of synthetic pathological RNN learning problems and the real world MNIST handwritten digit recognition task. Experimental results suggest that PSGD is able to achieve highly competitive performance without using any trick like preprocessing, pretraining or parameter tweaking.
Submission history
From: Xi-Lin Li [view email][v1] Tue, 14 Jun 2016 16:40:38 UTC (1,848 KB)
[v2] Thu, 8 Dec 2016 18:56:38 UTC (383 KB)
Current browse context:
stat.ML
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.