Computer Science > Computer Vision and Pattern Recognition
[Submitted on 28 Sep 2016]
Title:Graph Based Convolutional Neural Network
View PDFAbstract:The benefit of localized features within the regular domain has given rise to the use of Convolutional Neural Networks (CNNs) in machine learning, with great proficiency in the image classification. The use of CNNs becomes problematic within the irregular spatial domain due to design and convolution of a kernel filter being non-trivial. One solution to this problem is to utilize graph signal processing techniques and the convolution theorem to perform convolutions on the graph of the irregular domain to obtain feature map responses to learnt filters. We propose graph convolution and pooling operators analogous to those in the regular domain. We also provide gradient calculations on the input data and spectral filters, which allow for the deep learning of an irregular spatial domain problem. Signal filters take the form of spectral multipliers, applying convolution in the graph spectral domain. Applying smooth multipliers results in localized convolutions in the spatial domain, with smoother multipliers providing sharper feature maps. Algebraic Multigrid is presented as a graph pooling method, reducing the resolution of the graph through agglomeration of nodes between layers of the network. Evaluation of performance on the MNIST digit classification problem in both the regular and irregular domain is presented, with comparison drawn to standard CNN. The proposed graph CNN provides a deep learning method for the irregular domains present in the machine learning community, obtaining 94.23% on the regular grid, and 94.96% on a spatially irregular subsampled MNIST.
Submission history
From: Michael Edwards [view email][v1] Wed, 28 Sep 2016 15:32:59 UTC (14,213 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.