Computer Science > Human-Computer Interaction
[Submitted on 18 Oct 2016]
Title:Predict Moves
View PDFAbstract:Mobile applications and on-body devices are becoming increasingly ubiquitous tools for physical activity tracking. We propose utilizing a self-tracker's habits to support continuous prediction of whether they will reach their daily step goal, thus enabling a variety of potential persuasive interventions. Our aim is to improve the prediction by leveraging historical data and other qualitative (motivation for using the systems, location, gender) and, quantitative (age) features. We have collected datasets from two activity tracking platforms (Moves and Fitbit) and aim to check if the model we derive from one is generalizable over the other. In the following paper we establish a pipeline for extracting the data and formatting it for modeling. We discuss the approach we took and our findings while selecting the features and classification models for the dataset. We further discuss the notion of generalizability of the model across different types of dataset and the probable inclusion of non standard features to further improve the model's accuracy.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.