Computer Science > Computer Vision and Pattern Recognition
[Submitted on 6 Nov 2016 (v1), last revised 16 Feb 2020 (this version, v6)]
Title:The Shallow End: Empowering Shallower Deep-Convolutional Networks through Auxiliary Outputs
View PDFAbstract:Depth is one of the key factors behind the success of convolutional neural networks (CNNs). Since ResNet, we are able to train very deep CNNs as the gradient vanishing issue has been largely addressed by the introduction of skip connections. However, we observe that, when the depth is very large, the intermediate layers (especially shallow layers) may fail to receive sufficient supervision from the loss due to the severe transformation through a long backpropagation path. As a result, the representation power of intermediate layers can be very weak and the model becomes very redundant with limited performance. In this paper, we first investigate the supervision vanishing issue in existing backpropagation (BP) methods. And then, we propose to address it via an effective method, called Multi-way BP (MW-BP), which relies on multiple auxiliary losses added to the intermediate layers of the network. The proposed MW-BP method can be applied to most deep architectures with slight modifications, such as ResNet and MobileNet. Our method often gives rise to much more compact models (denoted by "Mw+Architecture") than existing methods. For example, MwResNet-44 with 44 layers performs better than ResNet-110 with 110 layers on CIFAR-10 and CIFAR-100. More critically, the resultant models even outperform the light models obtained by state-of-the-art model compression methods. Last, our method inherently produces multiple compact models with different depths at the same time, which is helpful for model selection.
Submission history
From: Mingkui Tan [view email][v1] Sun, 6 Nov 2016 13:20:06 UTC (211 KB)
[v2] Sat, 19 Nov 2016 04:57:40 UTC (212 KB)
[v3] Thu, 29 Dec 2016 14:59:13 UTC (212 KB)
[v4] Sun, 23 Apr 2017 12:01:57 UTC (1,422 KB)
[v5] Sat, 2 Nov 2019 07:23:25 UTC (1,236 KB)
[v6] Sun, 16 Feb 2020 04:18:25 UTC (1,236 KB)
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.