Computer Science > Networking and Internet Architecture
[Submitted on 22 Nov 2016]
Title:A Deep Learning Based DDoS Detection System in Software-Defined Networking (SDN)
View PDFAbstract:Distributed Denial of Service (DDoS) is one of the most prevalent attacks that an organizational network infrastructure comes across nowadays. We propose a deep learning based multi-vector DDoS detection system in a software-defined network (SDN) environment. SDN provides flexibility to program network devices for different objectives and eliminates the need for third-party vendor-specific hardware. We implement our system as a network application on top of an SDN controller. We use deep learning for feature reduction of a large set of features derived from network traffic headers. We evaluate our system based on different performance metrics by applying it on traffic traces collected from different scenarios. We observe high accuracy with a low false-positive for attack detection in our proposed system.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.