Computer Science > Computer Vision and Pattern Recognition
[Submitted on 2 Dec 2016 (v1), last revised 22 Mar 2017 (this version, v2)]
Title:Object Detection via Aspect Ratio and Context Aware Region-based Convolutional Networks
View PDFAbstract:Jointly integrating aspect ratio and context has been extensively studied and shown performance improvement in traditional object detection systems such as the DPMs. It, however, has been largely ignored in deep neural network based detection systems. This paper presents a method of integrating a mixture of object models and region-based convolutional networks for accurate object detection. Each mixture component accounts for both object aspect ratio and multi-scale contextual information explicitly: (i) it exploits a mixture of tiling configurations in the RoI pooling to remedy the warping artifacts caused by a single type RoI pooling (e.g., with equally-sized 7 x 7 cells), and to respect the underlying object shapes more; (ii) it "looks from both the inside and the outside of a RoI" by incorporating contextual information at two scales: global context pooled from the whole image and local context pooled from the surrounding of a RoI. To facilitate accurate detection, this paper proposes a multi-stage detection scheme for integrating the mixture of object models, which utilizes the detection results of the model at the previous stage as the proposals for the current in both training and testing. The proposed method is called the aspect ratio and context aware region-based convolutional network (ARC-R-CNN). In experiments, ARC-R-CNN shows very competitive results with Faster R-CNN [41] and R-FCN [10] on two datasets: the PASCAL VOC and the Microsoft COCO. It obtains significantly better mAP performance using high IoU thresholds on both datasets.
Submission history
From: Bo Li [view email][v1] Fri, 2 Dec 2016 01:20:02 UTC (4,527 KB)
[v2] Wed, 22 Mar 2017 16:28:24 UTC (5,865 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.