Computer Science > Computer Vision and Pattern Recognition
[Submitted on 30 Dec 2016 (v1), last revised 20 Aug 2017 (this version, v3)]
Title:Feedback Networks
View PDFAbstract:Currently, the most successful learning models in computer vision are based on learning successive representations followed by a decision layer. This is usually actualized through feedforward multilayer neural networks, e.g. ConvNets, where each layer forms one of such successive representations. However, an alternative that can achieve the same goal is a feedback based approach in which the representation is formed in an iterative manner based on a feedback received from previous iteration's output.
We establish that a feedback based approach has several fundamental advantages over feedforward: it enables making early predictions at the query time, its output naturally conforms to a hierarchical structure in the label space (e.g. a taxonomy), and it provides a new basis for Curriculum Learning. We observe that feedback networks develop a considerably different representation compared to feedforward counterparts, in line with the aforementioned advantages. We put forth a general feedback based learning architecture with the endpoint results on par or better than existing feedforward networks with the addition of the above advantages. We also investigate several mechanisms in feedback architectures (e.g. skip connections in time) and design choices (e.g. feedback length). We hope this study offers new perspectives in quest for more natural and practical learning models.
Submission history
From: Te-Lin Wu [view email][v1] Fri, 30 Dec 2016 15:39:45 UTC (4,697 KB)
[v2] Fri, 13 Jan 2017 04:26:49 UTC (4,697 KB)
[v3] Sun, 20 Aug 2017 07:15:55 UTC (4,699 KB)
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.