Computer Science > Computation and Language
[Submitted on 3 Jan 2017]
Title:Shortcut Sequence Tagging
View PDFAbstract:Deep stacked RNNs are usually hard to train. Adding shortcut connections across different layers is a common way to ease the training of stacked networks. However, extra shortcuts make the recurrent step more complicated. To simply the stacked architecture, we propose a framework called shortcut block, which is a marriage of the gating mechanism and shortcuts, while discarding the self-connected part in LSTM cell. We present extensive empirical experiments showing that this design makes training easy and improves generalization. We propose various shortcut block topologies and compositions to explore its effectiveness. Based on this architecture, we obtain a 6% relatively improvement over the state-of-the-art on CCGbank supertagging dataset. We also get comparable results on POS tagging task.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.