Computer Science > Neural and Evolutionary Computing
[Submitted on 5 Jan 2017]
Title:Subpopulation Diversity Based Selecting Migration Moment in Distributed Evolutionary Algorithms
View PDFAbstract:In distributed evolutionary algorithms, migration interval is used to decide migration moments. Nevertheless, migration moments predetermined by intervals cannot match the dynamic situation of evolution. In this paper, a scheme of setting the success rate of migration based on subpopulation diversity at each interval is proposed. With the scheme, migration still occurs at intervals, but the probability of immigrants entering the target subpopulation will be determined by the diversity of this subpopulation according to a proposed formula. An analysis shows that the time consumption of our scheme is acceptable. In our experiments, the basement of parallelism is an evolutionary algorithm for the traveling salesman problem. Under different value combinations of parameters for the formula, outcomes for eight benchmark instances of the distributed evolutionary algorithm with the proposed scheme are compared with those of a traditional one, respectively. Results show that the distributed evolutionary algorithm based on our scheme has a significant advantage on solutions especially for high difficulty instances. Moreover, it can be seen that the algorithm with the scheme has the most outstanding performance under three value combinations of above-mentioned parameters for the formula.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.