Computer Science > Computation and Language
[Submitted on 10 Feb 2017]
Title:UsingWord Embedding for Cross-Language Plagiarism Detection
View PDFAbstract:This paper proposes to use distributed representation of words (word embeddings) in cross-language textual similarity detection. The main contributions of this paper are the following: (a) we introduce new cross-language similarity detection methods based on distributed representation of words; (b) we combine the different methods proposed to verify their complementarity and finally obtain an overall F1 score of 89.15% for English-French similarity detection at chunk level (88.5% at sentence level) on a very challenging corpus.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.