Computer Science > Computer Vision and Pattern Recognition
[Submitted on 10 Feb 2017]
Title:Texture Characterization by Using Shape Co-occurrence Patterns
View PDFAbstract:Texture characterization is a key problem in image understanding and pattern recognition. In this paper, we present a flexible shape-based texture representation using shape co-occurrence patterns. More precisely, texture images are first represented by tree of shapes, each of which is associated with several geometrical and radiometric attributes. Then four typical kinds of shape co-occurrence patterns based on the hierarchical relationship of the shapes in the tree are learned as codewords. Three different coding methods are investigated to learn the codewords, with which, any given texture image can be encoded into a descriptive vector. In contrast with existing works, the proposed method not only inherits the strong ability to depict geometrical aspects of textures and the high robustness to variations of imaging conditions from the shape-based method, but also provides a flexible way to consider shape relationships and to compute high-order statistics on the tree. To our knowledge, this is the first time to use co-occurrence patterns of explicit shapes as a tool for texture analysis. Experiments on various texture datasets and scene datasets demonstrate the efficiency of the proposed method.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.