Computer Science > Computer Vision and Pattern Recognition
[Submitted on 3 Mar 2017]
Title:Deep Collaborative Learning for Visual Recognition
View PDFAbstract:Deep neural networks are playing an important role in state-of-the-art visual recognition. To represent high-level visual concepts, modern networks are equipped with large convolutional layers, which use a large number of filters and contribute significantly to model complexity. For example, more than half of the weights of AlexNet are stored in the first fully-connected layer (4,096 filters).
We formulate the function of a convolutional layer as learning a large visual vocabulary, and propose an alternative way, namely Deep Collaborative Learning (DCL), to reduce the computational complexity. We replace a convolutional layer with a two-stage DCL module, in which we first construct a couple of smaller convolutional layers individually, and then fuse them at each spatial position to consider feature co-occurrence. In mathematics, DCL can be explained as an efficient way of learning compositional visual concepts, in which the vocabulary size increases exponentially while the model complexity only increases linearly. We evaluate DCL on a wide range of visual recognition tasks, including a series of multi-digit number classification datasets, and some generic image classification datasets such as SVHN, CIFAR and ILSVRC2012. We apply DCL to several state-of-the-art network structures, improving the recognition accuracy meanwhile reducing the number of parameters (16.82% fewer in AlexNet).
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.