Computer Science > Computer Vision and Pattern Recognition
[Submitted on 10 Apr 2017 (v1), last revised 21 May 2017 (this version, v2)]
Title:Automatic Liver Lesion Detection using Cascaded Deep Residual Networks
View PDFAbstract:Automatic segmentation of liver lesions is a fundamental requirement towards the creation of computer aided diagnosis (CAD) and decision support systems (CDS). Traditional segmentation approaches depend heavily upon hand-crafted features and a priori knowledge of the user. As such, these methods are difficult to adopt within a clinical environment. Recently, deep learning methods based on fully convolutional networks (FCNs) have been successful in many segmentation problems primarily because they leverage a large labelled dataset to hierarchically learn the features that best correspond to the shallow visual appearance as well as the deep semantics of the areas to be segmented. However, FCNs based on a 16 layer VGGNet architecture have limited capacity to add additional layers. Therefore, it is challenging to learn more discriminative features among different classes for FCNs. In this study, we overcome these limitations using deep residual networks (ResNet) to segment liver lesions. ResNet contain skip connections between convolutional layers, which solved the problem of the training degradation of training accuracy in very deep networks and thereby enables the use of additional layers for learning more discriminative features. In addition, we achieve more precise boundary definitions through a novel cascaded ResNet architecture with multi-scale fusion to gradually learn and infer the boundaries of both the liver and the liver lesions. Our proposed method achieved 4th place in the ISBI 2017 Liver Tumor Segmentation Challenge by the submission deadline.
Submission history
From: Lei Bi [view email][v1] Mon, 10 Apr 2017 04:05:50 UTC (1,241 KB)
[v2] Sun, 21 May 2017 02:58:40 UTC (1,248 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.