Computer Science > Computer Vision and Pattern Recognition
[Submitted on 24 Apr 2017 (v1), last revised 25 Apr 2017 (this version, v2)]
Title:Body Joint guided 3D Deep Convolutional Descriptors for Action Recognition
View PDFAbstract:Three dimensional convolutional neural networks (3D CNNs) have been established as a powerful tool to simultaneously learn features from both spatial and temporal dimensions, which is suitable to be applied to video-based action recognition. In this work, we propose not to directly use the activations of fully-connected layers of a 3D CNN as the video feature, but to use selective convolutional layer activations to form a discriminative descriptor for video. It pools the feature on the convolutional layers under the guidance of body joint positions. Two schemes of mapping body joints into convolutional feature maps for pooling are discussed. The body joint positions can be obtained from any off-the-shelf skeleton estimation algorithm. The helpfulness of the body joint guided feature pooling with inaccurate skeleton estimation is systematically evaluated. To make it end-to-end and do not rely on any sophisticated body joint detection algorithm, we further propose a two-stream bilinear model which can learn the guidance from the body joints and capture the spatio-temporal features simultaneously. In this model, the body joint guided feature pooling is conveniently formulated as a bilinear product operation. Experimental results on three real-world datasets demonstrate the effectiveness of body joint guided pooling which achieves promising performance.
Submission history
From: Congqi Cao [view email][v1] Mon, 24 Apr 2017 11:58:24 UTC (8,415 KB)
[v2] Tue, 25 Apr 2017 15:08:05 UTC (8,160 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.