Computer Science > Computer Vision and Pattern Recognition
[Submitted on 22 May 2017 (v1), last revised 23 May 2017 (this version, v2)]
Title:Boosting the accuracy of multi-spectral image pan-sharpening by learning a deep residual network
View PDFAbstract:In the field of fusing multi-spectral and panchromatic images (Pan-sharpening), the impressive effectiveness of deep neural networks has been recently employed to overcome the drawbacks of traditional linear models and boost the fusing accuracy. However, to the best of our knowledge, existing research works are mainly based on simple and flat networks with relatively shallow architecture, which severely limited their performances. In this paper, the concept of residual learning has been introduced to form a very deep convolutional neural network to make a full use of the high non-linearity of deep learning models. By both quantitative and visual assessments on a large number of high quality multi-spectral images from various sources, it has been supported that our proposed model is superior to all mainstream algorithms included in the comparison, and achieved the highest spatial-spectral unified accuracy.
Submission history
From: Yancong Wei [view email][v1] Mon, 22 May 2017 05:13:15 UTC (824 KB)
[v2] Tue, 23 May 2017 12:16:42 UTC (742 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.