Computer Science > Information Theory
[Submitted on 27 May 2017]
Title:On The Continuous Coverage Problem for a Swarm of UAVs
View PDFAbstract:Unmanned aerial vehicles (UAVs) can be used to provide wireless network and remote surveillance coverage for disaster-affected areas. During such a situation, the UAVs need to return periodically to a charging station for recharging, due to their limited battery capacity. We study the problem of minimizing the number of UAVs required for a continuous coverage of a given area, given the recharging requirement. We prove that this problem is NP-complete. Due to its intractability, we study partitioning the coverage graph into cycles that start at the charging station. We first characterize the minimum number of UAVs to cover such a cycle based on the charging time, the traveling time, and the number of subareas to be covered by the cycle. Based on this analysis, we then develop an efficient algorithm, the cycles with limited energy algorithm. The straightforward method to continuously cover a given area is to split it into N subareas and cover it by N cycles using N additional UAVs. Our simulation results examine the importance of critical system parameters: the energy capacity of the UAVs, the number of subareas in the covered area, and the UAV charging and traveling this http URL demonstrate that the cycles with limited energy algorithm requires 69%-94% fewer additional UAVs relative to the straightforward method, as the energy capacity of the UAVs is increased, and 67%-71% fewer additional UAVs, as the number of subareas is increased.
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.