Computer Science > Social and Information Networks
[Submitted on 2 Aug 2017]
Title:Population Density-based Hospital Recommendation with Mobile LBS Big Data
View PDFAbstract:The difficulty of getting medical treatment is one of major livelihood issues in China. Since patients lack prior knowledge about the spatial distribution and the capacity of hospitals, some hospitals have abnormally high or sporadic population densities. This paper presents a new model for estimating the spatiotemporal population density in each hospital based on location-based service (LBS) big data, which would be beneficial to guiding and dispersing outpatients. To improve the estimation accuracy, several approaches are proposed to denoise the LBS data and classify people by detecting their various behaviors. In addition, a long short-term memory (LSTM) based deep learning is presented to predict the trend of population density. By using Baidu large-scale LBS logs database, we apply the proposed model to 113 hospitals in Beijing, P. R. China, and constructed an online hospital recommendation system which can provide users with a hospital rank list basing the real-time population density information and the hospitals' basic information such as hospitals' levels and their distances. We also mine several interesting patterns from these LBS logs by using our proposed system.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.