Computer Science > Computer Vision and Pattern Recognition
[Submitted on 8 Aug 2017]
Title:Temporal Context Network for Activity Localization in Videos
View PDFAbstract:We present a Temporal Context Network (TCN) for precise temporal localization of human activities. Similar to the Faster-RCNN architecture, proposals are placed at equal intervals in a video which span multiple temporal scales. We propose a novel representation for ranking these proposals. Since pooling features only inside a segment is not sufficient to predict activity boundaries, we construct a representation which explicitly captures context around a proposal for ranking it. For each temporal segment inside a proposal, features are uniformly sampled at a pair of scales and are input to a temporal convolutional neural network for classification. After ranking proposals, non-maximum suppression is applied and classification is performed to obtain final detections. TCN outperforms state-of-the-art methods on the ActivityNet dataset and the THUMOS14 dataset.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.