Computer Science > Computer Vision and Pattern Recognition
[Submitted on 30 Oct 2017]
Title:PupilNet v2.0: Convolutional Neural Networks for CPU based real time Robust Pupil Detection
View PDFAbstract:Real-time, accurate, and robust pupil detection is an essential prerequisite for pervasive video-based eye-tracking. However, automated pupil detection in realworld scenarios has proven to be an intricate challenge due to fast illumination changes, pupil occlusion, non-centered and off-axis eye recording, as well as physiological eye characteristics. In this paper, we approach this challenge through: I) a convolutional neural network (CNN) running in real time on a single core, II) a novel computational intensive two stage CNN for accuracy improvement, and III) a fast propability distribution based refinement method as a practical alternative to II. We evaluate the proposed approaches against the state-of-the-art pupil detection algorithms, improving the detection rate up to ~9% percent points on average over all data sets (~7% on one CPU core 7ms). This evaluation was performed on over 135,000 images: 94,000 images from the literature, and 41,000 new hand-labeled and challenging images contributed by this work (v1.0).
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.