Computer Science > Computer Vision and Pattern Recognition
[Submitted on 16 Nov 2017 (v1), last revised 26 Feb 2019 (this version, v2)]
Title:Frame Interpolation with Multi-Scale Deep Loss Functions and Generative Adversarial Networks
View PDFAbstract:Frame interpolation attempts to synthesise frames given one or more consecutive video frames. In recent years, deep learning approaches, and notably convolutional neural networks, have succeeded at tackling low- and high-level computer vision problems including frame interpolation. These techniques often tackle two problems, namely algorithm efficiency and reconstruction quality. In this paper, we present a multi-scale generative adversarial network for frame interpolation (\mbox{FIGAN}). To maximise the efficiency of our network, we propose a novel multi-scale residual estimation module where the predicted flow and synthesised frame are constructed in a coarse-to-fine fashion. To improve the quality of synthesised intermediate video frames, our network is jointly supervised at different levels with a perceptual loss function that consists of an adversarial and two content losses. We evaluate the proposed approach using a collection of 60fps videos from YouTube-8m. Our results improve the state-of-the-art accuracy and provide subjective visual quality comparable to the best performing interpolation method at x47 faster runtime.
Submission history
From: Jose Caballero [view email][v1] Thu, 16 Nov 2017 11:46:16 UTC (3,027 KB)
[v2] Tue, 26 Feb 2019 14:58:05 UTC (3,037 KB)
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.