Computer Science > Information Theory
[Submitted on 16 Nov 2017]
Title:Spatio-Temporal Motifs for Optimized Vehicle-to-Vehicle (V2V) Communications
View PDFAbstract:Caching popular contents in vehicle-to-vehicle (V2V) communication networks is expected to play an important role in road traffic management, the realization of intelligent transportation systems (ITSs), and the delivery of multimedia content across vehicles. However, for effective caching, the network must dynamically choose the optimal set of cars that will cache popular content and disseminate it in the entire network. However, most of the existing prior art on V2V caching is restricted to cache placement that is solely based on location and user demands and does not account for the large-scale spatio-temporal variations in V2V communication networks. In contrast, in this paper, a novel spatio-temporal caching strategy is proposed based on the notion of temporal graph motifs that can capture spatio-temporal communication patterns in V2V networks. It is shown that, by identifying such V2V motifs, the network can find sub-optimal content placement strategies for effective content dissemination across a vehicular network. Simulation results using real traces from the city of Cologne show that the proposed approach can increase the average data rate by $45\%$ for different network scenarios.
Current browse context:
cs.IT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.