Computer Science > Computer Vision and Pattern Recognition
[Submitted on 17 Nov 2017]
Title:Parallel Attention: A Unified Framework for Visual Object Discovery through Dialogs and Queries
View PDFAbstract:Recognising objects according to a pre-defined fixed set of class labels has been well studied in the Computer Vision. There are a great many practical applications where the subjects that may be of interest are not known beforehand, or so easily delineated, however. In many of these cases natural language dialog is a natural way to specify the subject of interest, and the task achieving this capability (a.k.a, Referring Expression Comprehension) has recently attracted attention. To this end we propose a unified framework, the ParalleL AttentioN (PLAN) network, to discover the object in an image that is being referred to in variable length natural expression descriptions, from short phrases query to long multi-round dialogs. The PLAN network has two attention mechanisms that relate parts of the expressions to both the global visual content and also directly to object candidates. Furthermore, the attention mechanisms are recurrent, making the referring process visualizable and explainable. The attended information from these dual sources are combined to reason about the referred object. These two attention mechanisms can be trained in parallel and we find the combined system outperforms the state-of-art on several benchmarked datasets with different length language input, such as RefCOCO, RefCOCO+ and GuessWhat?!.
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.