Computer Science > Computer Vision and Pattern Recognition
[Submitted on 17 Nov 2017]
Title:Chinese Typeface Transformation with Hierarchical Adversarial Network
View PDFAbstract:In this paper, we explore automated typeface generation through image style transfer which has shown great promise in natural image generation. Existing style transfer methods for natural images generally assume that the source and target images share similar high-frequency features. However, this assumption is no longer true in typeface transformation. Inspired by the recent advancement in Generative Adversarial Networks (GANs), we propose a Hierarchical Adversarial Network (HAN) for typeface transformation. The proposed HAN consists of two sub-networks: a transfer network and a hierarchical adversarial discriminator. The transfer network maps characters from one typeface to another. A unique characteristic of typefaces is that the same radicals may have quite different appearances in different characters even under the same typeface. Hence, a stage-decoder is employed by the transfer network to leverage multiple feature layers, aiming to capture both the global and local features. The hierarchical adversarial discriminator implicitly measures data discrepancy between the generated domain and the target domain. To leverage the complementary discriminating capability of different feature layers, a hierarchical structure is proposed for the discriminator. We have experimentally demonstrated that HAN is an effective framework for typeface transfer and characters restoration.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.