Computer Science > Computer Vision and Pattern Recognition
[Submitted on 21 Nov 2017 (v1), last revised 1 Dec 2017 (this version, v2)]
Title:Identifying Most Walkable Direction for Navigation in an Outdoor Environment
View PDFAbstract:We present an approach for identifying the most walkable direction for navigation using a hand-held camera. Our approach extracts semantically rich contextual information from the scene using a custom encoder-decoder architecture for semantic segmentation and models the spatial and temporal behavior of objects in the scene using a spatio-temporal graph. The system learns to minimize a cost function over the spatial and temporal object attributes to identify the most walkable direction. We construct a new annotated navigation dataset collected using a hand-held mobile camera in an unconstrained outdoor environment, which includes challenging settings such as highly dynamic scenes, occlusion between objects, and distortions. Our system achieves an accuracy of 84% on predicting a safe direction. We also show that our custom segmentation network is both fast and accurate, achieving mIOU (mean intersection over union) scores of 81 and 44.7 on the PASCAL VOC and the PASCAL Context datasets, respectively, while running at about 21 frames per second.
Submission history
From: Sachin Mehta [view email][v1] Tue, 21 Nov 2017 21:15:33 UTC (5,789 KB)
[v2] Fri, 1 Dec 2017 03:18:52 UTC (5,788 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.