Computer Science > Computer Vision and Pattern Recognition
[Submitted on 26 Nov 2017]
Title:Feature Map Pooling for Cross-View Gait Recognition Based on Silhouette Sequence Images
View PDFAbstract:In this paper, we develop a novel convolutional neural network based approach to extract and aggregate useful information from gait silhouette sequence images instead of simply representing the gait process by averaging silhouette images. The network takes a pair of arbitrary length sequence images as inputs and extracts features for each silhouette independently. Then a feature map pooling strategy is adopted to aggregate sequence features. Subsequently, a network which is similar to Siamese network is designed to perform recognition. The proposed network is simple and easy to implement and can be trained in an end-to-end manner. Cross-view gait recognition experiments are conducted on OU-ISIR large population dataset. The results demonstrate that our network can extract and aggregate features from silhouette sequence effectively. It also achieves significant equal error rates and comparable identification rates when compared with the state of the art.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.