Computer Science > Information Theory
[Submitted on 28 Jan 2018]
Title:A Comparison of SC-FDE and UW DFT-s-OFDM for Millimeter Wave Communications
View PDFAbstract:In this study, we compare the single-carrier (SC) waveform adopted in IEEE 802.11ad and unique word discrete Fourier transform spread orthogonal frequency division multiplexing (UW DFT-s-OFDM) waveform. We provide equivalent representations of up-sampling and down-sampling operations of the SC waveform by using discrete Fourier transform (DFT) and inverse DFT to enable explicit comparison of these two similar waveforms. By using this representation, we discuss why the IEEE 802.11ad SC waveform can cause suboptimal performance in multipath channel and discuss how to improve it with UW DFT-s-OFDM. With comprehensive link-level simulations, we show that replacing the 802.11ad SC waveform with UW DFT-spread OFDM can result in 1 dB gain in peak throughput without affecting the IEEE 802.11ad packet structure. We also evaluate the cross links where the transmitter is UW-DFT-s-OFDM and the receiver is traditional SC-FDE or vice versa. We demonstrate that UW DFT-s-OFDM receiver can decode an IEEE 802.11ad SC waveform with a slight SNR loss while IEEE 802.11ad SC receiver can decode a UW DFT-spread OFDM waveform with an interference floor.
Submission history
From: Alphan Sahin Dr. [view email][v1] Sun, 28 Jan 2018 03:56:03 UTC (1,728 KB)
Current browse context:
cs.IT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.