Computer Science > Computer Vision and Pattern Recognition
[Submitted on 14 Feb 2018 (v1), last revised 19 Sep 2018 (this version, v3)]
Title:Fully Convolutional Network Ensembles for White Matter Hyperintensities Segmentation in MR Images
View PDFAbstract:White matter hyperintensities (WMH) are commonly found in the brains of healthy elderly individuals and have been associated with various neurological and geriatric disorders. In this paper, we present a study using deep fully convolutional network and ensemble models to automatically detect such WMH using fluid attenuation inversion recovery (FLAIR) and T1 magnetic resonance (MR) scans. The algorithm was evaluated and ranked 1 st in the WMH Segmentation Challenge at MICCAI 2017. In the evaluation stage, the implementation of the algorithm was submitted to the challenge organizers, who then independently tested it on a hidden set of 110 cases from 5 scanners. Averaged dice score, precision and robust Hausdorff distance obtained on held-out test datasets were 80%, 84% and 6.30mm respectively. These were the highest achieved in the challenge, suggesting the proposed method is the state-of-the-art. In this paper, we provide detailed descriptions and quantitative analysis on key components of the system. Furthermore, a study of cross-scanner evaluation is presented to discuss how the combination of modalities and data augmentation affect the generalization capability of the system. The adaptability of the system to different scanners and protocols is also investigated. A quantitative study is further presented to test the effect of ensemble size. Additionally, software and models of our method are made publicly available. The effectiveness and generalization capability of the proposed system show its potential for real-world clinical practice.
Submission history
From: Hongwei Li [view email][v1] Wed, 14 Feb 2018 16:49:41 UTC (2,986 KB)
[v2] Wed, 29 Aug 2018 21:50:46 UTC (3,131 KB)
[v3] Wed, 19 Sep 2018 09:47:47 UTC (3,131 KB)
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.