Computer Science > Data Structures and Algorithms
[Submitted on 18 Feb 2018]
Title:Linear-Time Algorithm for Long LCF with $k$ Mismatches
View PDFAbstract:In the Longest Common Factor with $k$ Mismatches (LCF$_k$) problem, we are given two strings $X$ and $Y$ of total length $n$, and we are asked to find a pair of maximal-length factors, one of $X$ and the other of $Y$, such that their Hamming distance is at most $k$. Thankachan et al. show that this problem can be solved in $\mathcal{O}(n \log^k n)$ time and $\mathcal{O}(n)$ space for constant $k$. We consider the LCF$_k$($\ell$) problem in which we assume that the sought factors have length at least $\ell$, and the LCF$_k$($\ell$) problem for $\ell=\Omega(\log^{2k+2} n)$, which we call the Long LCF$_k$ problem. We use difference covers to reduce the Long LCF$_k$ problem to a task involving $m=\mathcal{O}(n/\log^{k+1}n)$ synchronized factors. The latter can be solved in $\mathcal{O}(m \log^{k+1}m)$ time, which results in a linear-time algorithm for Long LCF$_k$. In general, our solution to LCF$_k$($\ell$) for arbitrary $\ell$ takes $\mathcal{O}(n + n \log^{k+1} n/\sqrt{\ell})$ time.
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.