Physics > Medical Physics
[Submitted on 3 Mar 2018 (v1), last revised 17 Jan 2019 (this version, v3)]
Title:An Improved Method of Total Variation Superiorization Applied to Reconstruction in Proton Computed Tomography
View PDFAbstract:Previous work showed that total variation superiorization (TVS) improves reconstructed image quality in proton computed tomography (pCT). The structure of the TVS algorithm has evolved since then and this work investigated if this new algorithmic structure provides additional benefits to pCT image quality. Structural and parametric changes introduced to the original TVS algorithm included: (1) inclusion or exclusion of TV reduction requirement, (2) a variable number, $N$, of TV perturbation steps per feasibility-seeking iteration, and (3) introduction of a perturbation kernel $0<\alpha<1$. The structural change of excluding the TV reduction requirement check tended to have a beneficial effect for $3\le N\le 6$ and allows full parallelization of the TVS algorithm. Repeated perturbations per feasibility-seeking iterations reduced total variation (TV) and material dependent standard deviations for $3\le N\le 6$. The perturbation kernel $\alpha$, equivalent to $\alpha=0.5$ in the original TVS algorithm, reduced TV and standard deviations as $\alpha$ was increased beyond $\alpha=0.5$, but negatively impacted reconstructed relative stopping power (RSP) values for $\alpha>0.75$. The reductions in TV and standard deviations allowed feasibility-seeking with a larger relaxation parameter $\lambda$ than previously used, without the corresponding increases in standard deviations experienced with the original TVS algorithm. This work demonstrates that the modifications related to the evolution of the original TVS algorithm provide benefits in terms of both pCT image quality and computational efficiency for appropriately chosen parameter values.
Submission history
From: Blake Schultze [view email][v1] Sat, 3 Mar 2018 06:06:47 UTC (2,225 KB)
[v2] Thu, 6 Dec 2018 19:51:07 UTC (2,226 KB)
[v3] Thu, 17 Jan 2019 07:49:45 UTC (1,640 KB)
Current browse context:
physics.med-ph
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.