Computer Science > Sound
[Submitted on 23 Mar 2018 (v1), last revised 27 May 2018 (this version, v2)]
Title:Generalization Challenges for Neural Architectures in Audio Source Separation
View PDFAbstract:Recent work has shown that recurrent neural networks can be trained to separate individual speakers in a sound mixture with high fidelity. Here we explore convolutional neural network models as an alternative and show that they achieve state-of-the-art results with an order of magnitude fewer parameters. We also characterize and compare the robustness and ability of these different approaches to generalize under three different test conditions: longer time sequences, the addition of intermittent noise, and different datasets not seen during training. For the last condition, we create a new dataset, RealTalkLibri, to test source separation in real-world environments. We show that the acoustics of the environment have significant impact on the structure of the waveform and the overall performance of neural network models, with the convolutional model showing superior ability to generalize to new environments. The code for our study is available at this https URL.
Submission history
From: Shariq Mobin [view email][v1] Fri, 23 Mar 2018 01:26:39 UTC (2,833 KB)
[v2] Sun, 27 May 2018 17:03:09 UTC (1,418 KB)
Current browse context:
cs.SD
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.