Computer Science > Computer Vision and Pattern Recognition
[Submitted on 30 Mar 2018]
Title:Learning Beyond Human Expertise with Generative Models for Dental Restorations
View PDFAbstract:Computer vision has advanced significantly that many discriminative approaches such as object recognition are now widely used in real applications. We present another exciting development that utilizes generative models for the mass customization of medical products such as dental crowns. In the dental industry, it takes a technician years of training to design synthetic crowns that restore the function and integrity of missing teeth. Each crown must be customized to individual patients, and it requires human expertise in a time-consuming and labor-intensive process, even with computer-assisted design software. We develop a fully automatic approach that learns not only from human designs of dental crowns, but also from natural spatial profiles between opposing teeth. The latter is hard to account for by technicians but important for proper biting and chewing functions. Built upon a Generative Adversar-ial Network architecture (GAN), our deep learning model predicts the customized crown-filled depth scan from the crown-missing depth scan and opposing depth scan. We propose to incorporate additional space constraints and statistical compatibility into learning. Our automatic designs exceed human technicians' standards for good morphology and functionality, and our algorithm is being tested for production use.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.