Computer Science > Cryptography and Security
[Submitted on 10 Apr 2018]
Title:PULP: Inner-process Isolation based on the Program Counter and Data Memory Address
View PDFAbstract:Plenty of in-process vulnerabilities are blamed on various out of bound memory accesses. Previous prevention methods are mainly based on software checking associated with performance overhead, while traditional hardware protection mechanisms only work for inter-process memory accesses. In this paper we propose a novel hardware based in-process isolation system called PULP (Protection by User Level Partition). PULP modifies processor core by associating program counter and virtual memory address to achieve in-process data isolation. PULP partitions the program into two distinct parts, one is reliable, called primary functions, and the other is unreliable, called secondary functions, the accessible memory range of which can be configured via APIs. PULP automatically checks the memory bound when executing load/store operations in secondary functions. A RISC-V based FPGA prototype is implementated and functional test shows that PULP can effectively prevent in-process bug, including the Heartbleed and other buffer overflow vulnerabilities, etc. The total runtime overhead of PULP is negligible, as there is no extra runtime overhead besides configuring the API. We run SPEC2006 to evaluate the average performance, considering the LIBC functions as secondary functions. Experimental timing results show that, running bzip2, mcf, and libquantum, PULP bears low runtime overhead (less than 0.1%). Analysis also shows that PULP can be used effectively to prevent the newest "Spectre" bug which threats nearly all out-of-order processors.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.