Computer Science > Computer Vision and Pattern Recognition
[Submitted on 17 Apr 2018 (v1), last revised 22 Jul 2019 (this version, v2)]
Title:Complementary Attributes: A New Clue to Zero-Shot Learning
View PDFAbstract:Zero-shot learning (ZSL) aims to recognize unseen objects using disjoint seen objects via sharing attributes. The generalization performance of ZSL is governed by the attributes, which transfer semantic information from seen classes to unseen classes. To take full advantage of the knowledge transferred by attributes, in this paper, we introduce the notion of complementary attributes (CA), as a supplement to the original attributes, to enhance the semantic representation ability. Theoretical analyses demonstrate that complementary attributes can improve the PAC-style generalization bound of original ZSL model. Since the proposed CA focuses on enhancing the semantic representation, CA can be easily applied to any existing attribute-based ZSL methods, including the label-embedding strategy based ZSL (LEZSL) and the probability-prediction strategy based ZSL (PPZSL). In PPZSL, there is a strong assumption that all the attributes are independent of each other, which is arguably unrealistic in practice. To solve this problem, a novel rank aggregation framework is proposed to circumvent the assumption. Extensive experiments on five ZSL benchmark datasets and the large-scale ImageNet dataset demonstrate that the proposed complementary attributes and rank aggregation can significantly and robustly improve existing ZSL methods and achieve the state-of-the-art performance.
Submission history
From: Xiaofeng Xu [view email][v1] Tue, 17 Apr 2018 23:48:21 UTC (579 KB)
[v2] Mon, 22 Jul 2019 07:56:03 UTC (3,885 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.