Computer Science > Networking and Internet Architecture
[Submitted on 18 Apr 2018]
Title:Coexistence of URLLC and eMBB services in the C-RAN Uplink: An Information-Theoretic Study
View PDFAbstract:The performance of orthogonal and non-orthogonal multiple access is studied for the multiplexing of enhanced Mobile BroadBand (eMBB) and Ultra-Reliable Low-Latency Communications (URLLC) users in the uplink of a multi-cell Cloud Radio Access Network (C-RAN) architecture. While eMBB users can operate over long codewords spread in time and frequency, URLLC users' transmissions are random and localized in time due to their low-latency requirements. These requirements also call for decoding of their packets to be carried out at the edge nodes (ENs), whereas eMBB traffic can leverage the interference management capabilities of centralized decoding at the cloud. Using information-theoretic arguments, the performance trade-offs between eMBB and URLLC traffic types are investigated in terms of rate for the former, and rate, access latency, and reliability for the latter. The analysis includes non-orthogonal multiple access (NOMA) with different decoding architectures, such as puncturing and successive interference cancellation (SIC). The study sheds light into effective design choices as a function of inter-cell interference, signal-to-noise ratio levels, and fronthaul capacity constraints.
Current browse context:
cs.NI
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.