Computer Science > Computer Vision and Pattern Recognition
[Submitted on 15 May 2018 (v1), last revised 7 Sep 2018 (this version, v2)]
Title:Knowledge Distillation in Generations: More Tolerant Teachers Educate Better Students
View PDFAbstract:We focus on the problem of training a deep neural network in generations. The flowchart is that, in order to optimize the target network (student), another network (teacher) with the same architecture is first trained, and used to provide part of supervision signals in the next stage. While this strategy leads to a higher accuracy, many aspects (e.g., why teacher-student optimization helps) still need further explorations.
This paper studies this problem from a perspective of controlling the strictness in training the teacher network. Existing approaches mostly used a hard distribution (e.g., one-hot vectors) in training, leading to a strict teacher which itself has a high accuracy, but we argue that the teacher needs to be more tolerant, although this often implies a lower accuracy. The implementation is very easy, with merely an extra loss term added to the teacher network, facilitating a few secondary classes to emerge and complement to the primary class. Consequently, the teacher provides a milder supervision signal (a less peaked distribution), and makes it possible for the student to learn from inter-class similarity and potentially lower the risk of over-fitting. Experiments are performed on standard image classification tasks (CIFAR100 and ILSVRC2012). Although the teacher network behaves less powerful, the students show a persistent ability growth and eventually achieve higher classification accuracies than other competitors. Model ensemble and transfer feature extraction also verify the effectiveness of our approach.
Submission history
From: Lingxi Xie [view email][v1] Tue, 15 May 2018 03:51:03 UTC (56 KB)
[v2] Fri, 7 Sep 2018 17:37:25 UTC (135 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.