Computer Science > Information Theory
[Submitted on 18 May 2018]
Title:Efficient Downlink Channel Reconstruction for FDD Multi-Antenna Systems
View PDFAbstract:In this paper, we propose an efficient downlink channel reconstruction scheme for a frequency-division-duplex multi-antenna system by utilizing uplink channel state information combined with limited feedback. Based on the spatial reciprocity in a wireless channel, the downlink channel is reconstructed by using frequency-independent parameters. We first estimate the gains, delays, and angles during uplink sounding. The gains are then refined through downlink training and sent back to the base station (BS). With limited overhead, the refinement can substantially improve the accuracy of the downlink channel reconstruction. The BS can then reconstruct the downlink channel with the uplink-estimated delays and angles and the downlink-refined gains. We also introduce and extend the Newtonized orthogonal matching pursuit (NOMP) algorithm to detect the delays and gains in a multi-antenna multi-subcarrier condition. The results of our analysis show that the extended NOMP algorithm achieves high estimation accuracy. Simulations and over-the-air tests are performed to assess the performance of the efficient downlink channel reconstruction scheme. The results show that the reconstructed channel is close to the practical channel and that the accuracy is enhanced when the number of BS antennas increases, thereby highlighting that the promising application of the proposed scheme in large-scale antenna array systems.
Current browse context:
cs.IT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.