Computer Science > Computer Vision and Pattern Recognition
[Submitted on 5 Jul 2018 (v1), last revised 1 Apr 2019 (this version, v3)]
Title:Revisiting Perspective Information for Efficient Crowd Counting
View PDFAbstract:Crowd counting is the task of estimating people numbers in crowd images. Modern crowd counting methods employ deep neural networks to estimate crowd counts via crowd density regressions. A major challenge of this task lies in the perspective distortion, which results in drastic person scale change in an image. Density regression on the small person area is in general very hard. In this work, we propose a perspective-aware convolutional neural network (PACNN) for efficient crowd counting, which integrates the perspective information into density regression to provide additional knowledge of the person scale change in an image. Ground truth perspective maps are firstly generated for training; PACNN is then specifically designed to predict multi-scale perspective maps, and encode them as perspective-aware weighting layers in the network to adaptively combine the outputs of multi-scale density maps. The weights are learned at every pixel of the maps such that the final density combination is robust to the perspective distortion. We conduct extensive experiments on the ShanghaiTech, WorldExpo'10, UCF_CC_50, and UCSD datasets, and demonstrate the effectiveness and efficiency of PACNN over the state-of-the-art.
Submission history
From: Miaojing Shi [view email][v1] Thu, 5 Jul 2018 13:33:28 UTC (4,676 KB)
[v2] Sun, 9 Dec 2018 19:26:07 UTC (8,310 KB)
[v3] Mon, 1 Apr 2019 15:29:29 UTC (2,079 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.