Computer Science > Computer Vision and Pattern Recognition
[Submitted on 12 Jul 2018 (v1), last revised 18 Jul 2018 (this version, v2)]
Title:CTAP: Complementary Temporal Action Proposal Generation
View PDFAbstract:Temporal action proposal generation is an important task, akin to object proposals, temporal action proposals are intended to capture "clips" or temporal intervals in videos that are likely to contain an action. Previous methods can be divided to two groups: sliding window ranking and actionness score grouping. Sliding windows uniformly cover all segments in videos, but the temporal boundaries are imprecise; grouping based method may have more precise boundaries but it may omit some proposals when the quality of actionness score is low. Based on the complementary characteristics of these two methods, we propose a novel Complementary Temporal Action Proposal (CTAP) generator. Specifically, we apply a Proposal-level Actionness Trustworthiness Estimator (PATE) on the sliding windows proposals to generate the probabilities indicating whether the actions can be correctly detected by actionness scores, the windows with high scores are collected. The collected sliding windows and actionness proposals are then processed by a temporal convolutional neural network for proposal ranking and boundary adjustment. CTAP outperforms state-of-the-art methods on average recall (AR) by a large margin on THUMOS-14 and ActivityNet 1.3 datasets. We further apply CTAP as a proposal generation method in an existing action detector, and show consistent significant improvements.
Submission history
From: Kan Chen [view email][v1] Thu, 12 Jul 2018 21:07:01 UTC (431 KB)
[v2] Wed, 18 Jul 2018 20:25:26 UTC (439 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.