Computer Science > Artificial Intelligence
[Submitted on 16 Jul 2018 (v1), last revised 25 Jan 2019 (this version, v2)]
Title:Teaching machines to understand data science code by semantic enrichment of dataflow graphs
View PDFAbstract:Your computer is continuously executing programs, but does it really understand them? Not in any meaningful sense. That burden falls upon human knowledge workers, who are increasingly asked to write and understand code. They deserve to have intelligent tools that reveal the connections between code and its subject matter. Towards this prospect, we develop an AI system that forms semantic representations of computer programs, using techniques from knowledge representation and program analysis. To create the representations, we introduce an algorithm for enriching dataflow graphs with semantic information. The semantic enrichment algorithm is undergirded by a new ontology language for modeling computer programs and a new ontology about data science, written in this language. Throughout the paper, we focus on code written by data scientists and we locate our work within a larger movement towards collaborative, open, and reproducible science.
Submission history
From: Evan Patterson [view email][v1] Mon, 16 Jul 2018 06:21:54 UTC (117 KB)
[v2] Fri, 25 Jan 2019 06:19:21 UTC (293 KB)
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.