Computer Science > Information Retrieval
[Submitted on 21 Jul 2018]
Title:A Line in the Sand: Recommendation or Ad-hoc Retrieval?
View PDFAbstract:The popular approaches to recommendation and ad-hoc retrieval tasks are largely distinct in the literature. In this work, we argue that many recommendation problems can also be cast as ad-hoc retrieval tasks. To demonstrate this, we build a solution for the RecSys 2018 Spotify challenge by combining standard ad-hoc retrieval models and using popular retrieval tools sets. We draw a parallel between the playlist continuation task and the task of finding good expansion terms for queries in ad-hoc retrieval, and show that standard pseudo-relevance feedback can be effective as a collaborative filtering approach. We also use ad-hoc retrieval for content-based recommendation by treating the input playlist title as a query and associating all candidate tracks with meta-descriptions extracted from the background data. The recommendations from these two approaches are further supplemented by a nearest neighbor search based on track embeddings learned by a popular neural model. Our final ranked list of recommendations is produced by a learning to rank model. Our proposed solution using ad-hoc retrieval models achieved a competitive performance on the music recommendation task at RecSys 2018 challenge---finishing at rank 7 out of 112 participating teams and at rank 5 out of 31 teams for the main and the creative tracks, respectively.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.