Computer Science > Social and Information Networks
[Submitted on 13 Jul 2018 (v1), last revised 10 Jul 2019 (this version, v3)]
Title:Perturb and Combine to Identify Influential Spreaders in Real-World Networks
View PDFAbstract:Some of the most effective influential spreader detection algorithms are unstable to small perturbations of the network structure. Inspired by bagging in Machine Learning, we propose the first Perturb and Combine (P&C) procedure for networks. It (1) creates many perturbed versions of a given graph, (2) applies a node scoring function separately to each graph, and (3) combines the results. Experiments conducted on real-world networks of various sizes with the k-core, generalized k-core, and PageRank algorithms reveal that P&C brings substantial improvements. Moreover, this performance boost can be obtained at almost no extra cost through parallelization. Finally, a bias-variance analysis suggests that P&C works mainly by reducing bias, and that therefore, it should be capable of improving the performance of all vertex scoring functions, including stable ones.
Submission history
From: Antoine Tixier [view email][v1] Fri, 13 Jul 2018 13:43:15 UTC (801 KB)
[v2] Tue, 4 Sep 2018 11:30:12 UTC (216 KB)
[v3] Wed, 10 Jul 2019 13:20:52 UTC (365 KB)
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.