Computer Science > Networking and Internet Architecture
[Submitted on 3 Aug 2018]
Title:Optimizing Space-Air-Ground Integrated Networks by Artificial Intelligence
View PDFAbstract:It is widely acknowledged that the development of traditional terrestrial communication technologies cannot provide all users with fair and high quality services due to the scarce network resource and limited coverage areas. To complement the terrestrial connection, especially for users in rural, disaster-stricken, or other difficult-to-serve areas, satellites, unmanned aerial vehicles (UAVs), and balloons have been utilized to relay the communication signals. On the basis, Space-Air-Ground Integrated Networks (SAGINs) have been proposed to improve the users' Quality of Experience (QoE). However, compared with existing networks such as ad hoc networks and cellular networks, the SAGINs are much more complex due to the various characteristics of three network segments. To improve the performance of SAGINs, researchers are facing many unprecedented challenges. In this paper, we propose the Artificial Intelligence (AI) technique to optimize the SAGINs, as the AI technique has shown its predominant advantages in many applications. We first analyze several main challenges of SAGINs and explain how these problems can be solved by AI. Then, we consider the satellite traffic balance as an example and propose a deep learning based method to improve the traffic control performance. Simulation results evaluate that the deep learning technique can be an efficient tool to improve the performance of SAGINs.
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.