Computer Science > Cryptography and Security
[Submitted on 5 Aug 2018 (v1), last revised 30 Dec 2019 (this version, v3)]
Title:ATMPA: Attacking Machine Learning-based Malware Visualization Detection Methods via Adversarial Examples
View PDFAbstract:Since the threat of malicious software (malware) has become increasingly serious, automatic malware detection techniques have received increasing attention, where machine learning (ML)-based visualization detection methods become more and more popular. In this paper, we demonstrate that the state-of-the-art ML-based visualization detection methods are vulnerable to Adversarial Example (AE) attacks. We develop a novel Adversarial Texture Malware Perturbation Attack (ATMPA) method based on the gradient descent and L-norm optimization method, where attackers can introduce some tiny perturbations on the transformed dataset such that ML-based malware detection methods will completely fail. The experimental results on the MS BIG malware dataset show that a small interference can reduce the accuracy rate down to 0% for several ML-based detection methods, and the rate of transferability is 74.1% on average.
Submission history
From: Jiliang Zhang [view email][v1] Sun, 5 Aug 2018 01:03:13 UTC (459 KB)
[v2] Sat, 5 Oct 2019 09:04:07 UTC (564 KB)
[v3] Mon, 30 Dec 2019 12:46:20 UTC (515 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.