Computer Science > Machine Learning
[Submitted on 7 Sep 2018 (v1), last revised 30 Nov 2018 (this version, v2)]
Title:Tensor Ring Decomposition with Rank Minimization on Latent Space: An Efficient Approach for Tensor Completion
View PDFAbstract:In tensor completion tasks, the traditional low-rank tensor decomposition models suffer from the laborious model selection problem due to their high model sensitivity. In particular, for tensor ring (TR) decomposition, the number of model possibilities grows exponentially with the tensor order, which makes it rather challenging to find the optimal TR decomposition. In this paper, by exploiting the low-rank structure of the TR latent space, we propose a novel tensor completion method which is robust to model selection. In contrast to imposing the low-rank constraint on the data space, we introduce nuclear norm regularization on the latent TR factors, resulting in the optimization step using singular value decomposition (SVD) being performed at a much smaller scale. By leveraging the alternating direction method of multipliers (ADMM) scheme, the latent TR factors with optimal rank and the recovered tensor can be obtained simultaneously. Our proposed algorithm is shown to effectively alleviate the burden of TR-rank selection, thereby greatly reducing the computational cost. The extensive experimental results on both synthetic and real-world data demonstrate the superior performance and efficiency of the proposed approach against the state-of-the-art algorithms.
Submission history
From: Longhao Yuan [view email][v1] Fri, 7 Sep 2018 03:05:08 UTC (7,825 KB)
[v2] Fri, 30 Nov 2018 08:03:46 UTC (7,888 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.