Computer Science > Artificial Intelligence
[Submitted on 7 Sep 2018]
Title:Monte Carlo Tree Search with Scalable Simulation Periods for Continuously Running Tasks
View PDFAbstract:Monte Carlo Tree Search (MCTS) is particularly adapted to domains where the potential actions can be represented as a tree of sequential decisions. For an effective action selection, MCTS performs many simulations to build a reliable tree representation of the decision space. As such, a bottleneck to MCTS appears when enough simulations cannot be performed between action selections. This is particularly highlighted in continuously running tasks, for which the time available to perform simulations between actions tends to be limited due to the environment's state constantly changing. In this paper, we present an approach that takes advantage of the anytime characteristic of MCTS to increase the simulation time when allowed. Our approach is to effectively balance the prospect of selecting an action with the time that can be spared to perform MCTS simulations before the next action selection. For that, we considered the simulation time as a decision variable to be selected alongside an action. We extended the Hierarchical Optimistic Optimization applied to Tree (HOOT) method to adapt our approach to environments with a continuous decision space. We evaluated our approach for environments with a continuous decision space through OpenAI gym's Pendulum and Continuous Mountain Car environments and for environments with discrete action space through the arcade learning environment (ALE) platform. The evaluation results show that, with variable simulation times, the proposed approach outperforms the conventional MCTS in the evaluated continuous decision space tasks and improves the performance of MCTS in most of the ALE tasks.
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.