Computer Science > Neural and Evolutionary Computing
[Submitted on 7 Sep 2018]
Title:Optimizing deep video representation to match brain activity
View PDFAbstract:The comparison of observed brain activity with the statistics generated by artificial intelligence systems is useful to probe brain functional organization under ecological conditions. Here we study fMRI activity in ten subjects watching color natural movies and compute deep representations of these movies with an architecture that relies on optical flow and image content. The association of activity in visual areas with the different layers of the deep architecture displays complexity-related contrasts across visual areas and reveals a striking foveal/peripheral dichotomy.
Submission history
From: Hugo Richard [view email] [via CCSD proxy][v1] Fri, 7 Sep 2018 12:37:50 UTC (6,410 KB)
Current browse context:
cs.NE
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.