Computer Science > Computation and Language
[Submitted on 12 Sep 2018]
Title:Closed-Book Training to Improve Summarization Encoder Memory
View PDFAbstract:A good neural sequence-to-sequence summarization model should have a strong encoder that can distill and memorize the important information from long input texts so that the decoder can generate salient summaries based on the encoder's memory. In this paper, we aim to improve the memorization capabilities of the encoder of a pointer-generator model by adding an additional 'closed-book' decoder without attention and pointer mechanisms. Such a decoder forces the encoder to be more selective in the information encoded in its memory state because the decoder can't rely on the extra information provided by the attention and possibly copy modules, and hence improves the entire model. On the CNN/Daily Mail dataset, our 2-decoder model outperforms the baseline significantly in terms of ROUGE and METEOR metrics, for both cross-entropy and reinforced setups (and on human evaluation). Moreover, our model also achieves higher scores in a test-only DUC-2002 generalizability setup. We further present a memory ability test, two saliency metrics, as well as several sanity-check ablations (based on fixed-encoder, gradient-flow cut, and model capacity) to prove that the encoder of our 2-decoder model does in fact learn stronger memory representations than the baseline encoder.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.