Computer Science > Computer Vision and Pattern Recognition
[Submitted on 13 Sep 2018]
Title:Investigation of Multimodal Features, Classifiers and Fusion Methods for Emotion Recognition
View PDFAbstract:Automatic emotion recognition is a challenging task. In this paper, we present our effort for the audio-video based sub-challenge of the Emotion Recognition in the Wild (EmotiW) 2018 challenge, which requires participants to assign a single emotion label to the video clip from the six universal emotions (Anger, Disgust, Fear, Happiness, Sad and Surprise) and Neutral. The proposed multimodal emotion recognition system takes audio, video and text information into account. Except for handcraft features, we also extract bottleneck features from deep neutral networks (DNNs) via transfer learning. Both temporal classifiers and non-temporal classifiers are evaluated to obtain the best unimodal emotion classification result. Then possibilities are extracted and passed into the Beam Search Fusion (BS-Fusion). We test our method in the EmotiW 2018 challenge and we gain promising results. Compared with the baseline system, there is a significant improvement. We achieve 60.34% accuracy on the testing dataset, which is only 1.5% lower than the winner. It shows that our method is very competitive.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.